Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Phys Med ; 100: 142-152, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914322

ABSTRACT

PURPOSE: To develop and validate an automated segmentation tool for COVID-19 lung CTs. To combine it with densitometry information in identifying Aerated, Intermediate and Consolidated Volumes in admission (CT1) and follow up CT (CT3). MATERIALS AND METHODS: An Atlas was trained on manually segmented CT1 of 250 patients and validated on 10 CT1 of the training group, 10 new CT1 and 10 CT3, by comparing DICE index between automatic (AUTO), automatic-corrected (AUTOMAN) and manual (MAN) contours. A previously developed automatic method was applied on HU lung density histograms to quantify Aerated, Intermediate and Consolidated Volumes. Volumes of subregions in validation CT1 and CT3 were quantified for each method. RESULTS: In validation CT1/CT3, manual correction of automatic contours was not necessary in 40% of cases. Mean DICE values for both lungs were 0.94 for AUTOVsMAN and 0.96 for AUTOMANVsMAN. Differences between Aerated and Intermediate Volumes quantified with AUTOVsMAN contours were always < 6%. Consolidated Volumes showed larger differences (mean: -95 ± 72 cc). If considering AUTOMANVsMAN volumes, differences got further smaller for Aerated and Intermediate, and were drastically reduced for consolidated Volumes (mean: -36 ± 25 cc). The average time for manual correction of automatic lungs contours on CT1 was 5 ± 2 min. CONCLUSIONS: An Atlas for automatic segmentation of lungs in COVID-19 patients was developed and validated. Combined with a previously developed method for lung densitometry characterization, it provides a fast, operator-independent way to extract relevant quantitative parameters with minimal manual intervention.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Densitometry , Humans , Longitudinal Studies , Lung/diagnostic imaging
2.
Phys Med ; 85: 63-71, 2021 May.
Article in English | MEDLINE | ID: covidwho-1220831

ABSTRACT

PURPOSE: To train and validate a predictive model of mortality for hospitalized COVID-19 patients based on lung densitometry. METHODS: Two-hundred-fifty-one patients with respiratory symptoms underwent CT few days after hospitalization. "Aerated" (AV), "consolidated" (CV) and "intermediate" (IV) lung sub-volumes were quantified by an operator-independent method based on individual HU maximum gradient recognition. AV, CV, IV, CV/AV, IV/AV, and HU of the first peak position were extracted. Relevant clinical parameters were prospectively collected. The population was composed by training (n = 166) and validation (n = 85) consecutive cohorts, and backward multi-variate logistic regression was applied on the training group to build a CT_model. Similarly, models including only clinical parameters (CLIN_model) and both CT/clinical parameters (COMB_model) were developed. Model's performances were assessed by goodness-of-fit (H&L-test), calibration and discrimination. Model's performances were tested in the validation group. RESULTS: Forty-three patients died (25/18 in training/validation). CT_model included AVmax (i.e. maximum AV between lungs), CV and CV/AE, while CLIN_model included random glycemia, C-reactive protein and biological drugs (protective). Goodness-of-fit and discrimination were similar (H&L:0.70 vs 0.80; AUC:0.80 vs 0.80). COMB_model including AVmax, CV, CV/AE, random glycemia, biological drugs and active cancer, outperformed both models (H&L:0.91; AUC:0.89, 95%CI:0.82-0.93). All models showed good calibration (R2:0.77-0.97). Despite several patient's characteristics were different between training and validation cohorts, performances in the validation cohort confirmed good calibration (R2:0-70-0.81) and discrimination for CT_model/COMB_model (AUC:0.72/0.76), while CLIN_model performed worse (AUC:0.64). CONCLUSIONS: Few automatically extracted densitometry parameters with clear functional meaning predicted mortality of COVID-19 patients. Combined with clinical features, the resulting predictive model showed higher discrimination/calibration.


Subject(s)
COVID-19 , Densitometry , Humans , Lung , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
3.
Applied Sciences ; 11(3):1238, 2021.
Article in English | MDPI | ID: covidwho-1055013

ABSTRACT

The ongoing COVID-19 pandemic currently involves millions of people worldwide. Radiology plays an important role in the diagnosis and management of patients, and chest computed tomography (CT) is the most widely used imaging modality. An automatic method to characterize the lungs of COVID-19 patients based on individually optimized Hounsfield unit (HU) thresholds was developed and implemented. Lungs were considered as composed of three components—aerated, intermediate, and consolidated. Three methods based on analytic fit (Gaussian) and maximum gradient search (using polynomial and original data fits) were implemented. The methods were applied to a population of 166 patients scanned during the first wave of the pandemic. Preliminarily, the impact of the inter-scanner variability of the HU-density calibration curve was investigated. Results showed that inter-scanner variability was negligible. The median values of individual thresholds th1 (between aerated and intermediate components) were −768, −780, and −798 HU for the three methods, respectively. A significantly lower median value for th2 (between intermediate and consolidated components) was found for the maximum gradient on the data (−34 HU) compared to the other two methods (−114 and −87 HU). The maximum gradient on the data method was applied to quantify the three components in our population—the aerated, intermediate, and consolidation components showed median values of 793 ±499 cc, 914 ±291 cc, and 126 ±111 cc, respectively, while the median value of the first peak was −853 ±56 HU.

SELECTION OF CITATIONS
SEARCH DETAIL